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In recent years, agent-based models (ABMs) have become a prevalent approach for
modelling complex urban systems. As a class of bottom-up method, ABMs are capable
of simulating the decision-making as well as the multiple interactions of autonomous
agents and between agents and the environment. The definition of agents’ behaviour is
a vital issue in implementing ABMs to simulate urban dynamics. Urban economic the-
ory has provided effective ways to cope with this problem. This theory argues that the
formation of urban spatial structure is an endogenous process resulting from the inter-
actions among individual actors that are spatially distributed. However, this theory is
used to explain urban phenomena regardless of spatial heterogeneity in most cases. This
study combines GIS, ABM and urban economic models to simulate complex urban resi-
dential dynamics. The time-extended model is incorporated into an ABM so as to define
agents’ behaviour on a solid theoretical basis. A spatial variable is defined to address
the neighbourhood effect by considering spatial heterogeneity. The proposed model
is first verified by the simulation of three scenarios using hypothetical data: (1) sin-
gle dominated preference; (2) varying preferences on the basis of income level; and
(3) spatially heterogeneous environment. Then the model is implemented by simulating
the residential dynamics in Guangzhou, China.

Keywords: agent-based model; urban economic theory; time-extended model;
residential dynamics

1. Introduction

Cities are typical complex systems that are characterized as self-organized, non-linear and
emergent. Studies have demonstrated that urban systems can be simulated by a group of
‘bottom-up’ simulation models, such as cellular automata (Tobler 1979, Clarke and Gaydos
1998, Wu and Webster 1998, Li and Yeh 2000, 2002, 2004, Li et al. 2011). However, it has
been considered that these models have some limitations, such as the overstated empha-
sis on local interactions, the lack of economic foundation, the inability to explain human
behaviour and the omission of external variables (Irwin and Geoghegan 2001). Agent-
based models (ABMs), another class of bottom-up approach, are regarded as a promising
tool for modelling complex urban systems, in which the landscape is organized through a
cellular model and altered by the interacting individuals through a set of rules (Parker et al.
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1156 Y. Chen et al.

2003, An et al. 2005). It is suggested that ABMs can better reveal the underlying interac-
tions and dynamics of geographical phenomena and processes because of their strengths
of explicitly simulating the process of individual decision-making (An et al. 2005, Jepsen
et al. 2006, Xie et al. 2007).

As ABMs centralize around human action rather than landscape and transitions (Parker
et al. 2003, An et al. 2005), a major problem in applying ABMs is how to solicit agents’
behaviour using spatial information. Empirical knowledge and heuristics may be useful to
define agents’ behaviour. One can determine some of the parameters of an ABM using GIS
and census data according to multicriteria evaluation (MCE) techniques (Li and Liu 2007).
However, this cannot guarantee that agents can perform their functions in the same manner
as human experts. Thus an essential requirement for building consistent ABMs is a well-
defined theory, such as urban economic theory, for the definition of agents’ behaviour.
Urban economic theory demonstrates that the formation of urban spatial structure is an
endogenous process which is the result of interactions among individual actors that are
spatially distributed (Fujita 1989, Krugman 1991, Anas and Kim 1996). Therefore, the
incorporation of urban economic theory can ensure that agents’ behaviour is defined on a
solid theoretical basis.

In this study, we integrate an ABM with urban economic theory to simulate urban
residential dynamics. Literature on the simulation of residential dynamics can be traced
back to as early as the 1970s, such as the basic segregation model proposed by Schelling
(1971). Benenson (1998) is among those early authors to simulate residential dynamics
using ABMs. In Benenson’s model, the behaviour of inhabitants depend on their changing
economic and cultural status as well as the properties of local and global residential envi-
ronment. Kii and Doi (2005) proposed a multi-agent model for testing various development
policies, but the resolution of the data they used was relatively coarse. Recently, Li and
Liu (2008) incorporated sustainable development theories into an ABM to generate differ-
ent scenarios of residential development. Caruso and colleagues (2007) combined cellular
automata (CA) and microeconomic model to examine peri-urbanization. Although a CA
model was utilized instead of an ABM, residential agents were implicitly involved and
their behaviours were defined through the microeconomic model. Webster and Wu (1999a,
1999b) also embedded economic theory into CA to explore how urban development
impacts environment under different types of regulation.

This study further elaborates on the definition of residential agents’ behaviour based on
urban economic theory for simulating complex urban residential dynamics. The proposed
model incorporates more spatial details, such as the neighbourhood effect, accessibility and
environmental amenity, to improve the simulation performance. First, agents’ behaviour is
defined through the equilibrium solution of the time-extended model (Fujita 1989). Second,
the proposed model is verified by the simulation of three scenarios using hypothetical data:
(1) single dominated preference; (2) varying preferences on the basis of income level; and
(3) spatially heterogeneous environment. Finally, this model is tested by the simulation of
residential dynamics in Guangzhou, China.

2. Defining agents’ behaviour based on urban economic theory

2.1. Time-extended model

The time-extended model (Fujita 1989) explains how residents optimally select their
residential locations with respect to economic constraints. In this model, commuting
costs involve not only money but also time. A resident who lives in a monocentric and
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International Journal of Geographical Information Science 1157

geographically homogeneous city intends to maximize their residential utility, subject to
the constraints of budget balance and time balance. The utility function is defined as U(z,
s, t1), where the variables z, s, t1 represent non-spatial commodity consumption, residential
size and leisure time, respectively. The budget balance and time balance are represented by
the following equations:

z + R(r)s + ar = YN + Wtw (1)

t1 + tw + br = t̄ (2)

In Equation (1), R(r) is the rent of a parcel with the distance r from the central business
district (CBD), a represents the unit cost of commuting, tw is the working time and YN and
W represent the non-wage income and wage income, respectively. This equation indicates
that a resident’s overall cost of commodity consumption, rent payment and commuting
equals the total income (including wage income and non-wage income). The variable t̄
in Equation (2) is the total time spent by a resident for three purposes: leisure, working
and commuting. The parameter b is the time cost per unit of distance. The objective of a
resident is expressed as

max
r,z,s,t1,tw

U(z, s, t1) (3)

After transforming Equations (1) and (2), we can get

z + R(r)s + Wt1 = I(r) (4)

I(r) = YN + W (t̄ − br) − ar (5)

where I(r) is called the potential income.
The urban economic theory describes the urban residential pattern as the consequence

of the process of interactions among individual residents. We depict the decision-making
of the residents using the concept of bid-rent. Caruso et al. (2007) also used this concept to
explain the formation of different residential structures in the urban fringe. Bid-rent refers
to the maximum rent that a resident would like to pay for reaching the residential utility u
at a specified location with the distance r from the CBD:

�(r, u) = max
z,s,t1

{
I(r) − z − Wt1

s
|U(z, s, t1) = u

}
(6)

The ‘bid-rent’ is relative rather than equivalent to the actual ‘rent’ in the real world. It is
more appropriate to consider the ‘bid-rent’ as the residential cost (or more exactly, the
highest cost one can afford), which can be the rent for an apartment or the housing mort-
gage payment, for example, Benenson’s (1998) model. Benenson’s model is concerned
about the housing issue, in which the resident agents do not always ‘fix’ in the positions
where they own their houses. It should be noted that the focus of this article is not on
the rental market although the time-extended model is related to the concept of bid-rent.
In the real rental market, the tenants are price (rent) takers, and the price is determined by
the supply–demand relationship (or by policy), which needs other modules to address.

Generally, urban economic models neglect spatial heterogeneity to obtain an equilib-
rium solution; nonetheless, they offer promising potential for incorporating the effects of
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1158 Y. Chen et al.

spatial heterogeneity at a disaggregate level (Irwin and Geoghegan 2001). Thus, in this
study we introduce a spatial variable ρ to represent the neighbourhood effect in residential
decisions. This variable suggests that the residents will consider the local condition of a
parcel when evaluating its residential utility, for example, the compatibility to their neigh-
bours, as well as budget their money and time during the decision-making process. The
neighbourhood effect ρ is calculated using the following equation:

ρ = exp

⎡
⎣ n∑

j

Con(Hj)

n

⎤
⎦ (7)

where Hj represents the type of the neighbouring agents, which can be categorized as low,
medium and high in terms of their income levels. The parameter n is the number of neigh-
bours. Con(Hj) is the compatibility to a neighbouring resident of type j, which is calculated
by the normalized difference of income level, that is, |Wi – Wj|/(Wi + Wj).

The residential utility can be expressed as follows:

U(z, s, t1, ρ) = α log z + β log s + γ log t1 + ω log ρ (8)

where α, β, γ and ω are the preference parameters to represent the weights an agent has
for each component, that is, commodity, residential size, leisure time and neighbourhood
effect, respectively; these parameters are subject to α > 0, β > 0, γ > 0, ω > 0 and
α + β + γ + ω = 1.

Equation (8) is a revised version of the utility function in Fujita (1989). The original
one is U(z, s, t1) = α log z + β log s + γ log t1. In Caruso et al. (2007), the Cobb–Douglas
function was adopted to calculate residential utility. In this study we add the neighbourhood
effect ρ in the utility function on the basis of the original utility function. As a result, the
bid-rent can be rewritten as

�(r, u) = max
z,s,t1,ρ

{
I(r) − z − Wt1

s
|U(z, s, t1, ρ) = u

}
(9)

In order to solve Equation (9), we can transform Equation (8) into

Z(s, t1, ρ, u) = eu/αs−β/αt−γ /α

1 ρ−ω/α (10)

From Fujita (1989), the maximization can be distilled as follows:

∂

(
I(r) − Z(s, t1, ρ, u) − Wt1

s

)
∂s

= 0 (11)

∂

(
I(r) − Z(s, t1, ρ, u) − Wt1

t1

)
∂t1

= 0 (12)

Then

−∂Z

∂s
= �(r, u) (13)
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International Journal of Geographical Information Science 1159

− ∂Z

∂t1
= W (14)

Based on Equations (8), (10), (13) and (14), we can get

�(r, u) =
(

α

1 − ω

)α/β
β

1 − ω

(
γ

1 − ω

)γ /β

W−γ /β I(r)(1−ω)/βρω/βe−u/β (15)

z = α

1 − ω
I(r) (16)

t1 =
γ

1−ω
I(r)

W
(17)

s =
β

1−ω
I(r)

�(r, u)
(18)

u = V [I(r), ρ, �] = log

[(
α

1 − ω

)α (
β

1 − ω

)β (
γ

1 − ω

)γ

W−γ I(r)1−ωρω�−β

]
(19)

Equation (19) is called the indirect function of residential utility. The behaviours of
residents are determined through the equations mentioned above, which illustrate how
residents allocate their income and time to maximize their residential utility.

2.2. Simulating complex residential dynamics

Some assumptions (Kii and Doi 2005, Caruso et al. 2007) are adopted when implementing
the proposed model to simulate residential dynamics: (1) residents (agents) are economi-
cally rational in that their objective is to maximize the residential utility at a certain parcel
by optimally allocating their income and time, while the objective of the landlords is to
maximize the land revenue, that is, the residential size multiplied by land rent; (2) for
simplicity, the model omits the decision process of selecting a consumption site and the
corresponding spatial cost of accessing the consumption site; (3) resident agents only take
current conditions into account when deciding the residential location, regardless of the
consequences; similarly, the landlords do not concern future change caused by the decision
of re-allocating the parcel to a certain resident agent.

At each time step, each resident agent calculates the potential income according to
the commuting distance rxy, wage Wi, non-wage income Yi,N, monetary cost a and time
cost b per unit of distance, that is, using Equation (5). Then by Equations (16)–(18),
the corresponding amount of commodity consumption, residential size and leisure time
are computed. The neighbourhood effect at parcel (x, y) is evaluated using Equation (7).
Finally, the residential utility ut

xy at time t of a specified position is computed by
Equation (8).

Resident agents have to collect some basic information during the residential deci-
sion process. When land markets are competitive, residents are assumed to have perfect
knowledge about the city they live in (Fujita 1989). However, in this study, we assume
that agents have bounded knowledge instead of perfect knowledge. This assumption is
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1160 Y. Chen et al.

based on the realistic behaviour of residents during the site selection process. In real life,
people can usually obtain detailed information about their neighbourhood, but are inca-
pable of acquiring complete information of a large geographical extent, for example, the
whole city. The proposed model integrates two types of information for agents to make
decisions: deterministic information at a local scale and random information at the global
scale. The former guides each agent to search for a vacant parcel with the highest resi-
dential utility, denoted as locally best parcel, by traversing all parcels within a rectangle
neighbourhood (e.g. 5 × 5). Besides, each agent selects a position randomly at a global
scale, denoted as randomly selected parcel. The parcel that has higher residential utility
between the locally best parcel and the randomly selected parcel is denoted as the target
parcel, which is considered by agents for relocation. If the utility surplus δu, that is, the
difference of utility between the target parcel and current location, is greater than the given
threshold 
u0 (
u0 > 0), the agent will apply to the landlord of the target parcel for mov-
ing there. By denoting the target parcel as (x′, y′) and the corresponding residential utility
as ut

x′y′ , there are

δu = ut
x′y′ − ut

xy = log

[
C1

� t
xy

� t
x′y′

]
(20)

C1 =
(

Ix′y′

Ixy

)1−ω (
ρx′y′

ρxy

)ω

(21)

and

� t
x′y′ = � t

xyC−β

1
e−δu/β (22)

∂� t
x′y′

∂δu
= − 1

β
� t

xyC−β

1
e−δu/β < 0 (23)

Equation (23) indicates that � t
x′y′ increases when δu declines. A resident agent prefers to

raise the bid-rent � t
x′y′ up to the highest value in order to outbid others. The maximum

of � t
x′y′ can be obtained when δu = 0. This is called the short-run residential equilibrium

(Caruso et al. 2007). After � t
x′y′ is determined, the residential size at parcel (x′, y′), that is,

sx′y′ , can be computed using Equation (18).
If the parcel is applied for by only one resident agent, then this agent can possess the

parcel without bidding. If two or more resident agents are competing for the same parcel,
the one who offers the highest land revenue for the landlord can eventually occupy it. The
land revenue is defined as follows:

Hr = max
Hi

{
�Hi sHi

}
(24)

A resident agent relocates when it outbids other agents who claim the same parcel, other-
wise remains at its current position. The immediate cost of agents making a bid is 0, but it
does not mean that there is no risk of making a bid. This can be represented by a constraint
that an agent has to leave the city if it fails to outbid for a couple of times.

The vacant parcels depreciate at a predefined rate until the land rents of these parcels
decline to the lower bound (i.e. the initial land rent). The rent of a certain parcel occupied
by a resident agent at time step t + 1, �t+1, is updated according to Equation (25):

D
ow

nl
oa

de
d 

by
 [

T
he

 S
ci

en
ce

 a
nd

 T
ec

hn
ol

og
y 

L
ib

ra
ry

 o
f 

G
ua

ng
do

ng
 P

ro
vi

nc
e]

 a
t 0

7:
09

 2
0 

Se
pt

em
be

r 
20

12
 



International Journal of Geographical Information Science 1161

�t+1 = w0�t + (1 − w0)�̄N (25)

where �t and �N represent the current rent and the mean rent of the neighbourhood,
respectively.

A resident agent will leave the city once any one of the following situations is
encountered:

(1) The residential utility at the current location is less than or equal to 0, and no target
parcel can be found by the agent.

(2) The agent fails to outbid and the residential utility at current location falls to 0 or
less than 0.

(3) The number of times the agent fails to outbid exceeds a threshold.

3. Model implementation and results

3.1. Model configuration and data

First, the proposed model is tested by applying it to hypothetical data. We design three
scenarios with a 50 × 50 artificial city to identify the performance of the model: (1) single
dominated preference; (2) varying preferences on the basis of income level; and (3) spa-
tially heterogeneous environment. Then this model is implemented for simulating the
residential dynamics of Guangzhou in 2006 (scenario 4). This simulation outcome is evalu-
ated by the actual housing price in 2006 (source: Guangzhou Land Resources and Housing
Authority, http://www.laho.gov.cn/).

In the first experiment, all parcels in the artificial city are vacant with the initial land
rent. We assume that all resident agents are working at the city centre, that is, the CBD. The
resident agents are classified in terms of income level, graded as low, medium and high.
At the beginning of the simulation process, the initial locations of the resident agents are
randomly generated to avoid the bias caused by manually deciding their locations (Jackson
et al. 2008, Yin 2009). At each iteration step, a number of new residents are added to
the city until the population of residents reaches the predefined value, which depends on
the land supply. The simulation process will be terminated when the residential pattern
evolves into a stable stage in which the average residential utility converges to a certain
value. Figure 1 illustrates the decision process of agents at each iteration step, which
includes the following procedures: (1) the agent evaluates the location it currently pos-
sess; (2) the agent searches for better parcels; (3) the agent relocate when outbidding other
competitors by offering the highest land revenue for the landlord; (4) the agent leaves
the city under the situation specified in Section 2.2, otherwise still remains at the current
position.

Table 1 shows the basic configuration for the first three scenarios using the hypo-
thetical data. Since the simulation based on ABMs is sensitive to agents’ preferences,
the first two scenarios are used to evaluate the impact of agents’ preferences. Therefore,
we leave out other spatial constraints but only consider the distance to CBD so that the
effects of agents’ preferences can be better understood. The first scenario, that is, ‘single
dominated preference’, assumes that all resident agents have the same consumption prefer-
ence and is further divided into three sub-scenarios: dominated preference of commodity,
residential size and leisure time, respectively. Table 2 lists agents’ preferences for all
sub-scenarios.
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1162 Y. Chen et al.

Figure 1. Flow chart of agents’ decision process.

Table 1. Model configuration for all three scenarios.

Income level Income level

Low Medium High Low Medium High

Proportion 0.4 0.35 0.25 Non-wage income 1000 500 0
Wage 10 30 50 t̄ 1000 500 0
b 4 2.5 1 Agent count 1500 1500 1500
a 1 45 110

Table 2. Agents’ preferences in scenario 1.

Dominated preference of α β γ ω

Commodity consumption 0.85 0.05 0.05 0.05
Residential size 0.05 0.85 0.05 0.05
Leisure time 0.05 0.05 0.85 0.05
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The second scenario represents ‘varying preferences on the basis of income level’,
which assumes that low-income agents are more likely to spend their money on commodity
while high-income agents are prone to enlarge their residential size and have more leisure
time. The medium-income agents’ preferences are moderate between those of the low-
income and high-income agents. Table 3 shows agents’ preferences of this scenario.

The artificial city is in a rather homogenous pattern which cannot represent the geo-
graphical complexity of the real world. In scenario 3, three spatial variables, distance to
roads, distance to stations and distance to environmental entities, are incorporated into the
proposed model so as to involve more spatial heterogeneity (Figure 2).

Generally, the accessibility to the CBD is better for parcels close to major roads. This
effect can be transformed into the sense of ‘shrinking’ the distance between a parcel and
CBD:

sd = krdr + b0 (26)

rs = sdr (27)

where sd is the shrinking parameter. As shown by Equation (26), sd is the linear function
of dr (the normalized distance to roads), in which kr is the slope and b0 is the intercept. kr,
b0 are subject to kr ≥ 0, b0 ≥ 0 and kr + b0 = 1. These conditions ensure that sd ranges
from 0 to 1. Equation (26) indicates that locations closer to roads have stronger shrinking
effects (lower value of sd). In Equation (27), r is the original distance to the CBD and rs is
the shrunken distance to the CBD.

Table 3. Agents’ preferences in scenarios 2–4.

Scenario 2 Scenario 3 Scenario 4 (Guangzhou)

Income level α β γ ω α β γ ω α β γ ω

Low 0.65 0.15 0.1 0.1 0.65 0.15 0.1 0.1 0.65 0.1 0.1 0.15
Medium 0.3 0.3 0.25 0.15 0.3 0.3 0.2 0.2 0.3 0.2 0.25 0.25
High 0.1 0.3 0.45 0.15 0.1 0.3 0.35 0.25 0.15 0.25 0.3 0.3

Figure 2. Hypothetical data for scenario 3: (a) distance to roads; (b) distance to stations; and
(c) distance to river.
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1164 Y. Chen et al.

The public transit system is important in urban transport systems, particularly for the
low-income residents. Therefore this scenario assumes that time cost per unit of distance
decreases at a rate that correlates to the normalized distance to stations ds:

st = ksds + b0 (28)

bs = stb (29)

where st is the reduction parameter; it is calculated using a linear function in which ks

and d0 are slope and intercept, respectively. They are also subject to ks ≥ 0, b0 ≥ 0 and
ks + b0 = 1. In Equation (29), b and bs are the original and reduced time cost per unit of
distance, respectively.

Environmental amenity is also a crucial factor for agents to make residential decision.
Locations are more attractive when they are near mountains covered with a large area of
well-grown natural vegetation or those close to rivers/lakes with clean water. In scenario 3,
the environmental amenity E is represented through the exponential function of normalized
distance to environmental entities de:

E = exp (−λde) (30)

Equation (30) indicates that environmental amenity decreases as the distance to environ-
mental entities increases. λ is the scaling factor, which will magnify or weaken the effect.
Originally, the neighbourhood effect variable ρ only takes into account the homogeneity
of neighbouring agents, which can be denoted as S. The environmental amenity E can be
further embedded into ρ, and consequently ρ can be reformulated as follows:

ρ = wsS + weE (31)

ws and we are subject to ws + we = 1.
Additionally, the economic status of residents will be updated at each step. The wage

of an agent at time t is renewed according to Equation (32) (Benenson 1998):

Wt+1 = Wt + εR

(
Wt

K

)(
1 − Wt

K

)
(32)

where Wt and Wt+1 are the respective wages at time t and t+1, R is the growth rate, ε

is the random effect and K is the capacity of wage, that is, the maximum value of wage.
Agents’ preferences and model configuration for scenario 3 are shown in Tables 3 and 4,
respectively.

In the second experiment, the proposed model is applied to the simulation of residen-
tial dynamics in Guangzhou, China (scenario 4). The spatial variables which are used for
implementing this model are shown in Figure 3. The study area is approximately 1355 km2.
There are 449 × 435 pixels with the resolution of 100 m. These spatial variables include
distance to city centres, distance to stations, urban extent, distance to major roads and dis-
tance to environmental entities. According to the analysis presented by Lu et al. (2006),
there are dual centres in Guangzhou: one is in the old city proper and another is in the
so-called new urbanized areas that are mainly within Tianhe District and Huangpu District.
Therefore, the variable of distance to city centres (Figure 3a) is calculated based on the
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Table 4. Model configuration in scenario 3.

Income level Income level

Low Medium High Low Medium High

kr 0.5 0.2 0 λ 5 5 5
ks 0.5 0.5 0.5 ws 0.7 0.5 0.3
R 0.2 0.2 0.2 we 0.3 0.5 0.7
K 100 100 100

Figure 3. The required data for simulating the residential dynamics in Guangzhou, China: (a) dis-
tance to city centre; (b) distance to stations; (c) distance to major roads; (d) distance to environmental
entities; and (e) urban extent.

locations of the dual centres. The study conducted by Li and Liu (2007) demonstrates that
the distance to major roads is a significant factor when residents in Guangzhou consider
relocation. As shown in Figure 3c, the distance to roads represents the accessibility of a
location, which is generated based on the spatial distribution of the major roads rather than
every road or street in Guangzhou. The distance to environmental entities is confirmed to
be important for evaluating a location’s residential utility in accordance with the fact that
the rent/housing price is the highest along the Pearl River in Guangzhou.

The MCE method (Li and Liu 2007) is adopted to estimate the agents’ preferences in
each group (Table 3). The parameters kr, ks and λ are specified by a trial-and-error approach
through extensive simulations. This is accomplished by running the model using different
combinations of parameters and comparing the simulated land rent to the actual housing
price. The values of kr, ks and λ are set according to the combination which generates the
most similar result with the actual housing price. The number of agents is set according
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Table 5. Model configuration in residential modelling of Guangzhou, China.

Income level Income level

Low Medium High Low Medium High

Proportion 0.35 0.35 0.3 kr 0.3 0.1 0
Agent count 4550 4550 3900 ks 0.35 0.35 0.35
Wage 10 30 50 ws 0.7 0.5 0.3
b 10 7 5 we 0.3 0.5 0.7
a 10 20 30 R 0.2 0.2 0.2
Non-wage income 0 0 0 K 100 100 100
t̄ 600 600 600 λ 15 15 15

to the quantity of urban land use in 2006. The values of other parameters are determined
through statistical data for Guangzhou (http://www.gzstats.gov.cn/pchb/) (Table 5).

3.2. Results and discussion

Figure 4 displays the simulation of the three sub-scenarios in scenario 1. The residential
patterns are similar in the sub-scenarios ‘commodity consumption’ and ‘leisure time’ that
both residential patterns exhibit concentric structures. The majority of high-income res-
ident agents congregate around the CBD, and conversely, almost all low-income agents
locate at the periphery of the city. The space between the parcels occupied by the two

Figure 4. Simulation results of scenario 1 (divided into three sub-scenarios).
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previous agent groups is possessed by the medium-income agents. The values of average
distance to CBD of high-income agents are lowest compared with other resident groups,
while of low-income agents are the highest in both sub-scenarios mentioned above. Unlike
these two sub-scenarios, the sub-scenario ‘residential size’ exhibits a striped residential
pattern. The stripes have irregular spatial distribution and each stripe is occupied by the
same type of agents. Moreover, the spatial distribution of different resident agents is dis-
tinct from those of the previous two sub-scenarios: the values of average distance to CBD
of three resident groups are extremely identical, and the values of standard deviation are
the highest among three sub-scenarios (Table 6). Despite the difference in the residential
patterns, the patterns of land rent shares similar spatial distribution in all sub-scenarios.
The simulated land rent in all sub-scenarios consistently tends to decrease gradually from
the CBD to the urban fringe. These patterns are very classical in urban economic theory
(Fujita 1989). However, these classical patterns will be ‘broken’ when spatial heterogeneity
is involved in the following scenarios.

As illustrated by Figure 5, the value of mean residential utility in the sub-scenario
‘leisure time’ increases rapidly in the early stage of the simulation process then gradually
declines and eventually converges to a value close to 5.5. The convergence processes of
mean residential utility are quite similar among the three sub-scenarios, so we just use the
sub-scenario ‘leisure time’ as a visual example.

Figure 6 shows the results of scenarios 2 and 3. In scenario 2, most of the medium-
income and high-income residents are living at the urban periphery while low-income
residents are gathering around the central area (Table 7), which is contrary to the residential

Table 6. Average and standard deviation of distance to the CBD in scenario 1.

Income level

Dominated preference of Low Medium High

Commodity consumption 19.69 (1.85) 13.88 (2.31) 7.77 (3.21)
Residential size 14.80 (5.03) 15.66 (5.01) 12.77 (5.22)
Leisure time 19.32 (1.82) 13.54 (3.28) 8.48 (3.51)

5.65

5.60

5.55

5.50

5.45

5.40
1 101 201 301 401 501 601 701 801 901 1001

Figure 5. The convergence of mean residential utility (sub-scenario 3 in scenario 1). (a)-(c) are
simulated residential patterns of sub-scenario commodity consumption, residence size and leisure
time, respectively. (d)-(f) are simulated land rent of sub-scenario commodity consumption, residence
size and leisure time, respectively.
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1168 Y. Chen et al.

Figure 6. Simulation results of scenarios 2 and 3. (a) and (b) are simulated residential patterns of
scenario 2 and 3, respectively. (c) and (d) are simulated land rent of scenario 2 and 3, respectively.

Table 7. Average and standard deviation of distance to the CBD in scenarios 2 and 3.

Scenario 2 Scenario 3

Income level Low Medium High Low Medium High

Average 10.24 17.68 19.36 11.87 15.98 22.75
Standard deviation 3.95 4.14 3.68 5.76 5.26 4.98

pattern in scenario 1. Furthermore, the land rent is highest in the urban fringe where there
are different types of residents. This is different from the result that the land rent peaked in
the city centre in scenario 1.

Scenario 3 displayed in Figure 6 produces a segregation pattern. Low-income residents
prefer the parcels along the roads and around the city centre. The corridors close to rivers
are more attractive to high-income residents. Medium-income residents scatter all over
the region, including the urban fringe, locations with higher accessibility and parcels with
high-quality environmental amenities. Due to the improved accessibility, the values of aver-
age distance to CBD in this scenario are the highest among all tested scenarios (Table 7).
The highest land rent is observed in the northwest and southwest parts of the city which
have greater environmental amenity and better transportation conditions.
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Figure 7. Simulating both the residents’ distribution and land rent distribution of Guangzhou in
2006: (a) residents’ distribution; (b) simulated land rent; and (c) actual housing price.

Figure 7 illustrates the simulation results using a real data set of Guangzhou in 2006.
Table 5 lists the parameters of this simulation. Agents’ preferences are determined by the
MCE method. The use of the MCE method is quite popular when various spatial variables
are involved to model geographical phenomena (Jankowski and Richard 1994, Jiang and
Eastman 2000). This method will not produce unrealistic cluster patterns because of using
regionalized preferences. One example is the simulation of sub-scenario 2 in scenario 1.
In this sub-scenario, we only consider the distance to the CBD and the weight of neighbour-
hood effect is set to a very low value. As a result, the model produces a distinct residential
pattern (a striped pattern) compared with those in sub-scenarios 1 and 3.

As depicted in Figure 7a, the locations with better environmental quality, for example,
river banks, are mainly occupied by high-income residents. Low-income residents choose
to live along major roads and stations to reduce commuting cost. The residential pattern of
the medium-income agents is a trade-off between environmental quality and accessibility.
The spatial pattern of agents in Figure 7a is more irregular, compared with that in Figure 6b.
This is because much more spatial complexity exists in real spatial data, so the clusters are
not as large as those shown in Figure 6b.

Figure 7b and c shows the simulated land rent and actual housing price of Guangzhou.
A visual test reveals that the pattern of simulated land rent can well accord with the actual
pattern of housing price. It is more convincing to use a quantitative method to assess the
agreement between these two patterns. The kappa coefficient is generally used to quantify
the similarity between two binary maps for model validation (Li and Liu 2007). We employ
the Pearson’s r to validate the model because it is more suitable for the comparison
involving continuous values:

r =

n∑
i=1

(
ls,i − l̄

)
s

(
la,i − l̄a

)
√

n∑
i=1

(
ls,i − l̄

)2

s

√
n∑

i=1

(
la,i − l̄a

)2

(33)

where ls, i and la, i are the simulated land rent and actual housing price at cell i.
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The calculation of r is accomplished using a GIS package, ArcGIS 9.3 (ESRI,
Redlands, CA). The result of r is 0.81 (the 95% confidence interval is [0.805, 0.815]),
and thus the coefficient of determination (r2) is 0.6561. This indicates a strong correlation
between the simulated pattern of land rent and the actual housing price. Besides, we use
the t-test to assess the significance of the correlation coefficient:

t = r√
1−r2

N−2

with df = N − 2 (34)

where N is the number of observation pairs and df is the degree of freedom.
The value of t is 157.473 (with df = 12,998) > t (0.000, 12,998). This indicates that

the strong correlation is significant. Therefore, the proposed model can yield the simulation
result which well fits to the actual one.

4. Conclusions

ABMs have become a prevalent method for modelling complex systems which are char-
acterized as emergent. Emergent phenomena, such as residential patterns, are aggregate
outcomes that cannot be predicted by examining the elements in isolation (Parker et al.
2003). Studies have indicated that these emergent phenomena can be practically modelled
using ABMs. However, the definition of agents’ behaviour is not an easy job when ABMs
are implemented to model complex natural systems. This problem can be alleviated by
well-defined theories, such as urban economic theory.

This research developed an ABM which incorporates urban economic theory for sim-
ulating complex residential dynamics. The incorporation of urban economic theory can
ensure that agents’ behaviour is defined on a solid theoretical basis and also allow the
production of unexpected results because of the uncertainties of the ABM. One previous
example can be seen in Webster and Wu (1999a, 1999b)’s studies. These authors used eco-
nomic theory to define the transition rules of a CA to simulate urban growth. Although the
theory is deterministic, there are additional unknowns due to the uncertainties introduced
by the CA model. For instance, CA models are trend dependent, and thus it is hard to pre-
dict that the outcome of particular economic equilibrium will be in cellular space (Webster
et al. 1999b). In this study, our simulation model can also yield some unexpected results
compared with those classical patterns predicted by urban economic theory. One example
is the simulation of sub-scenario 2 in scenario 1 (see Section 3.2).

First, we used an artificial city to examine the performance of the proposed model.
When agents’ preferences are set the same (scenario 1), the produced residential pat-
terns have concentric structure and striped structure. The concentric residential structure is
observed when all residents concentrate on the preference of commodity consumption or
leisure time to achieve high residential utility. When the preference to residential size is set
to be dominant, the residential pattern presents the striped structure. Yet in all the three sub-
scenarios, the values of land rent consistently decline from the CBD to the urban fringe.
In scenario 2, both the residential pattern and the land rent pattern differ from the results in
scenario 1 significantly, on the condition that agents’ preferences are varying in accordance
with income level. We have taken roads, stations and rivers into account in scenario 3 with
the purpose of representing real spatial heterogeneity. Compared with scenarios 1 and 2,
scenario 3 has achieved broader residential extent because of the improved accessibility.

Second, we implemented this integrated model to simulate the residential dynamics in
Guangzhou (scenario 4). The simulation result shows that high-income residents prefer the
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places with high environmental quality, while low-income residents live in the inner city to
save commuting cost. Medium-income residents choose the trade-off places for dwelling
by considering environmental quality and accessibility simultaneously. The Pearson’s r
was used to validate the similarity of patterns between the simulated land rent and the
real housing price. The result of r is 0.81 (r2 = 0.6561) that suggests strong correlation.
Meanwhile the result of t-test also reveals that such correlation is significant. Therefore,
the proposed model is capable of simulating residential patterns which are very close to
those of the real world.

This article has demonstrated the potential of combining ABM with urban economic
models for simulating residential dynamics. This integrated model can be used to verify
the assumptions of urban theory because of its ability to reproduce the classic pattern of
land rent, as the simulation shown in scenario 1. Moreover, our experiments have also
indicated that the proposed model can serve as a useful exploratory tool for evaluating
development policies in fast growing regions. For instance, the proposed model can be
used to assess the impacts of new infrastructure on residential dynamics. In this context,
more spatial constraints are needed, for example, the distance to the infrastructure or other
corresponding attributes. Then the model is run under two scenarios: before and after the
construction of the new infrastructure. Finally, the impacts of such projects can be assessed
by comparing the simulation outcomes.

The objective of this article is to incorporate urban economic theory to define agents’
behaviour. Further study may need to test the performance of this model for assisting pol-
icy making since this model has the capability to help spatial decision-making. Meanwhile
the top-down planning process usually plays an important role in the resident spatial pat-
tern except for the individual decision processes. To address this issue, it is necessary
to introduce the agents representing planners/decision-makers and model the interactions
between different stakeholders. For example, Ligtenberg et al. (2001) have proposed an
ABM to model the process of land use planning involving multi-actors. We will consider
that game theory (Parsons et al. 2002), which may do an interesting job explaining the
interactions between different groups of agents (Epstein 1999), can be used for modelling
urban residential development using ABMs in our future studies.
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